Research Article

Transfusion Reactions: A clinical audit

S. Prabakar

Consultant, Transfusion Medicine, Kauvery Hospital, Radial Road, Chennai

Abstract

Aim

- Stabilize blood volume, when essential
- Improve tissue oxygenation
- Ensure adequate hemostasis
- Ensure right blood of right quality to the right patient at the right time

Methods and methodology

- Sep 2023 to Feb 2024 59 patients were given Avil and Dexamethasone either as premedication or after reaction occurred.
- Out of 6000 transfusion 59 transfusions (1%) had reactions (documented).
- 3. Under reporting?
- 4. Not classifying the type of reaction

Background

The study, transfusion reactions from blood components, was conducted in

this population to validate the rational drug usage and scarce resource associated complications.

Blood components

- 1. Packed red blood cells (PRBCs)
- 2. Fresh Frozen Plasma (FFP)
- 3. Platelet Concentrates (PCs)
- 4. Cryoprecipitate (Cryo)

Challenges with Storage of Whole Blood at 40°C

Red cells: O2 carrying capacity decreases within 7-10 days

Platelets: Lose viability within 12 hours

Granulocytes: Disintegrate within 24 hours

FVIII Levels: Decrease to 20-30% within a week

WBCs: Release cytokines, RBC damage

Component preparation

Principle - Differential centrifugation

Kauverian Medical Journal Vol 1 Issue 9 July 2024

- Red cells
- Plasma Fresh frozen
- Platelets
- > Cryoprecipitate

Parameters of Blood Components

S	Blood	Unit	Storag	Sh
-	products	volu	е	elf
Ν		me	temper	life
ο		(ml)	ature	
1	WB (Hct	400/	$2 - 6^{0}$ C	35
	35–40%)	500		da
				ys
2	PRBCs	160	$2 - 6^{0}C$	35
	(Hct 55-	_		da
	75%)	350		ys/
				42
				da
				ys
				in
				AS
3	PCs	60 -	20 –	5
	(5×10 ¹⁰	90/2	24ºC	da
	or	00 –		ys
	3×10 ¹¹)	300		
4	FFP	160	< –	On
		_	20ºC	е
		250		ye
				ar
5	Cryopreci	20 –	< –	On
	pitate	40	20ºC	е
				ye
				ar

Appropriate Transfusion of Red Cells

- Symptomatic anemia oxygen deficit
- Co-existing conditions age, general health, determine hemoglobin trigger.
- Not for treatable conditions Iron/B12/Folate deficiency
- 4. Avoid single unit transfusions as far as possible

Appropriate Transfusion of Fresh Frozen Plasma

- Replacement of multiple factors: DIC, liver disease, warfarin reversal
- Replacement of single factors when appropriate substitute is not available
- 3. Dose: 10-15 ml/kg
- 4. Not for "maintaining CVP"
- 5. Not for protein content

Appropriate Transfusion of Platelet Concentrates

- 1. Symptomatic platelet problems
- 2. Do not treat the number in isolation
 - eg Chronic ITP with no bleeds

- 3. Prophylactic in specific situations
 - CNS, eye surgery, other major surgeries, acute leukemia, patients on chemoradiotherapy
- 4. Dose: 1 RDP/10 Kg or 1 SDP

Appropriate Transfusion of Cryoprecipitate

- 1. Deficiency of
 - Factor VIII, Fibrinogen,
 vWF, F XIII
 - Consumption
 coagulopathies
- 2. Volume is an important consideration
 - WB FVIII 0.3 u/ml; 120 u/400 ml
 - FFP FVIII 1 u/ml; 200 u/200 ml
 - Cryo ppt FVIII 8-10 u/ml;
 80 u/10 ml
- 3. Dose: 1 bag/10 kg

Bedside Component Administration

- Identify the type of component (mentioned in the reaction form)
- Positive identification of intended recipient and the blood component

- Visual colour change dark blackish/brown, gaseous distention/frothing, clots.
- 4. Check expiry date
- 5. Record vital of the patient
- Do not add any medication to the bag /administration line.
- Leukocyte contamination in blood components ranges from 109 – 105
- 8. Blood filters
 - Standard (170-260 µm)
 - Leukoreduction filters

Storage temperatures and maximum bedside storage time allowed

Compon ent type	Storage tempera ture	Admin	ister
Whole	2-6 ⁰ C	≤30	Wit
blood/Pa		minu	hin
cked red		tes of	4 hr
cell		issue	
Platelet -	22±2°C	≤30	Wit
Random		minu	hin
PC, SDP		tes of	4 hr
		issue	
Plasma,	≤-20 ⁰ C	<30	< 6
Cryo,		minu	hr
СРР		tes	

During Transfusion

- Closely observe, monitor and document patient's vitals including urine output and colour
- 2. Every 5 min for first 15 min
- 3. Every 15 min for next 1/2 hr
- 4. Every 30 min for next 1 hr
- 5. Every hr till the end of transfusion
- 6. 30 min post transfusion.

Issue of blood units

Clinical urgency				
Immediate	Minutes	Within		
		an hour		
Group O Rh	ABO and	ABO and		
Negative	Rh type	Rh type		
Packed	Group	cross		
RBCs	specific	match		
	blood			

Special issues in obstetrics transfusion

- 1. Irregular Antibodies
- 2. DIC often complicates abruption placentae
- Thrombocytopenia, impaired
 LFT complicates preeclampsia/eclampsia

Neonatal transfusion

- 1. RBC ABO and Rh typing; no serum grouping
- 2. Cross match with maternal serum
- 3. WB or PRBCs within 7 days of collection
- 4. CMV seronegative, if possible
- 5. Blood bags with small satellite bags

Reactio	Immunologi	Non
n type	C	immunol
		ogic
Acute	Hemolytic	Transfusio
Transfus		n
ion	Febrile non-	associate
Reactio	hemolytic	d sepsis
ns	Urticaria	Hypotensi
	Anaphylactic	on
		associate
	Trali	d with ace
		inhibitors
		Тасо
		Non
		immune
		hemolysis
		Air embolism

		Hypocalce
		mia
		Hypother
		mia
Delayed	Alloimmuniz	Iron
Transfus	ation- RBC	overload
ion	antigen	
Reactio		Disease
ns	Alloimmuniz	transmissi
	ation- HLA	on
	antigens	
	Hemolytic	
	GVHD	
	Post	
	transfusion	
	purpura	
	Transfusion	
	related	
	immuno	
	modulation	

Precautions for Post Transfusion

In case of any untoward reactions;

- 1. Stop transfusion immediately
- 2. Keep the I/V line patent
- 3. Take necessary resuscitative measure
- 4. Investigations to be done

- Complete blood count (CBC)
- Coagulation screen
- Renal function test (Urea, creatinine and electrolytes)
- Liver function tests
 (bilirubin, ALT and AST)
- Plasma Hb
- ➤ Urine Hb
- Blood culture in special blood culture bottles

Blood Bank Requirements

- Blood bag with BT set
- Post transfusion samples (EDTA & Plain)
- Completely filled and signed reaction form

Blood Bank Investigations

- Visual check of pre, post and Blood Bag samples
- 2. Repeat ABO & Rh (D) grouping
- 3. Repeat antibody screen and crossmatch
- 4. Direct antiglobulin test

Complications of Massive Transfusion

- 1. Citrate toxicity
- 2. Hyperkalemia

- 3. Hypothermia
- 4. Dilutional thrombocytopenia
- 5. Coagulapathy

Preventive measures

- 1. Do not transfuse if at all possible
- 2. Use screened blood
- 3. Compatibility testing
- 4. Specially processed blood/components
- 5. Hemovigilance

Optimizing Clinical Benefit of Transfusion

- Start transfusion within 30 minutes of removal from blood bank refrigerator
- Check ABO and Rh (D) compatibility in case of PRBC, ABO in case of FFP.
- Do not refrigerate in case of Platelets
- 4. Complete transfusion within 4 hours
- 5. Never add medication